
17© Springer India 2016 
D.P. Singh et al. (eds.), Microbial Inoculants in Sustainable Agricultural Productivity, 
DOI 10.1007/978-81-322-2644-4_2

      Effi cacy of Biofertilizers: 
Challenges to Improve Crop 
Production                     

     E.     Malusà     ,     F.     Pinzari    , and     L.     Canfora   

    Abstract  

  Different kinds of soil microorganisms belonging to several taxa of the 
bacteria, fungi, and possibly, protozoa kingdoms, colonizing the rhizo-
sphere or the plant tissues and promoting plant growth (PGPM), can be 
utilized for the production of microbial-based fertilizers (biofertilizers). 
However, their application in agricultural practice is still hindered by sev-
eral factors. The main reasons derive from the unpredictability of results, 
problems to identify and track inoculated strains in the fi eld, the poor 
understanding of the interrelationships between microorganisms and 
plants, and the technology of production. After describing in brief which 
microorganisms have been utilized up until now to improve plant produc-
tivity through enhanced nutrition, we mention for possible exploitation of 
new groups of microorganisms (e.g. non-mycorrhizal fungi). Furthermore, 
we review the factors affecting the effi cacy of biofertilizers on crop pro-
ductivity, from the point of view of the farmers, who appraise their appli-
cation on the base of their effi cacy. In particular, we consider the factors 
related to the production process (including quality and marketing stan-
dards), the persistence and traceability of inoculants, the relations between 
plant, soil conditions and microorganisms, as well as the effect of farmers’ 
practices (fertilization, soil management practices, application method). In 
conclusion, it emerges that biofertilizers could allow obtaining a crop 
 productivity similar to that obtained with mineral fertilizers, but with a 
signifi cant reduction of their use. Therefore, biofertilizers can play a key 
role to develop an integrated nutrient management system, sustaining agri-
cultural productivity with low environmental impact.  
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2.1       Introduction 

 Exploiting microbial-based fertilizers can be 
traced back to ancient times—already Classical 
Greek and Roman writings (namely Virgil’s 
 Georgics  or Pliny the Elder’s  Naturalis Historiae ) 
described agricultural practices for improving 
yield, that we can today link to microbiological 
activity (e.g. rotation with legumes or use of ani-
mal manure); the ancient Maya were managing 
water in the Mexico wetlands to support a com-
plex mixture of algae, cyanobacteria, and other 
microorganisms also with the purpose of increas-
ing the content of nutrients in the soil (Morrison 
and Cozatl-Manzano  2003 ). However, a con-
scious use of microorganisms for soil fertiliza-
tion started in the late nineteenth century, when 
patenting and marketing of microorganisms for 
fertilization purposes began (Kilian et al.  2000 ; 
Nobbe and Hiltner 1896, cited in Bashan  1998 ). 
Since then, particularly in the last couple of 
decades, the development and use of microbial- 
based fertilizers has gained signifi cance in the 
effort of reducing the negative environmental 
effects generated by the excessive and/or 
improper application of chemical fertilizers. 
However, despite the huge amount of studies and 
fi ndings of benefi cial strains, the application of 
microbial-based fertilizers in agricultural prac-
tice is still hindered by several factors. The main 
reasons derive from the unpredictability of 
results, problems to identify and track inoculated 
strains in the fi eld, the poor understanding of the 
interrelationships between microorganisms and 
plants, and the technology of production (Bashan 
et al.  2014 ; Lucy et al.  2004 ; Owen et al.  2015 ). 
In this chapter, we aim to describe which factors 
we consider as mostly affecting a widespread 
exploitation of microbial fertilizers. Moreover, 
we want to foster actions by the different stake-
holders interested in this sector that could pro-
mote a wider practical application of these 

products. We also briefl y describe which micro-
organisms have been utilized up until now to 
improve plant productivity through enhanced 
nutrition, also providing information about new 
groups of microorganisms not widely exploited 
yet.  

2.2     Microorganisms 
for Biofertilizers 

 Different kinds of soil microorganisms belonging 
to several taxa of the bacteria, fungi, and possi-
bly, protozoa kingdoms, colonizing the rhizo-
sphere or the plant tissues and promoting plant 
growth (PGPM), can be utilized for the produc-
tion of biofertilizers (Lucy et al.  2004 ; Smith and 
Read  2008 ; Vessey  2003 ). Their contribution to 
plant nutrition can be limited to a single nutrient 
element, as in the case of N-fi xing bacteria, or to 
a variety of elements, such as for arbuscular 
mycorrhizal fungi (AMF) (Bardi and Malusà 
 2012 , and references therein). However, they can 
have a remarkable impact on the yield and qual-
ity of plants, increasing the nutrient uptake capac-
ity and the use effi ciency of applied chemical or 
organic fertilizers. Rhizobia, the best known N 2 -
fi xing bacteria symbionts of legume plants, are 
able to provide up to 90 % of the N requirements 
of the host through atmospheric N 2  fi xation 
(Franche et al.  2009 ), but they can also behave as 
plant growth promoting rhizobacteria (PGPR) 
with non-legumes such as maize, wheat, rice, and 
canola (Hayat et al.  2010 ; Yanni et al.  2001 ). 
Non-symbiotic free-living N-fi xing bacteria spe-
cies have been proved to enhance N uptake of 
plants (Bardi and Malusà  2012 ; Lucy et al.  2004 ; 
Okon and Labandera-Gonzalez  1994 ), which can 
derive nitrogen from biological nitrogen fi xation 
in 7–58 % range in cereals (Baldani et al.  2000 ; 
Malik et al.  2002 ) and up to 60–80 % in sugar-
cane (Boddey et al.  1991 ). Cyanobacteria 
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( Anabaena ,  Aulosira  and  Nostoc ), as free-living 
or in symbiosis with Azolla, a small free fl oating 
fresh water fern, were found to fi x N and to 
release it for rice uptake in the range of 30–40 up 
to 70–110 kg N ha −1  (Wagner  1997 ). Arbuscular 
mycorrhizal fungi (AMF) may supply more than 
50 % of plant N requirements (Govindarajulu 
et al.  2005 ; Leigh et al.  2009 ), which is particu-
larly important under arid and semi-arid condi-
tions, where water availability limits uptake of 
mobile nutrients such as inorganic N 
(Subramanian and Charest  1999 ). AM fungi can 
take up nitrogen both as inorganic (either ammo-
nium or nitrate) and organic (Hawkins et al. 
 2000 ). 

 Arbuscular mycorrhizal fungi form the major 
group of microorganisms contributing to plant 
phosphorus (P) uptake (Smith and Read  2008 ) by 
increased exploitation of the soil (Cavagnaro 
et al.  2005 ), the solubilization of inorganic P 
forms (Tawaraya et al.  2006 ), and the hydroliza-
tion of organic P (Richardson et al.  2009 ). Several 
PGPR are very effective in solubilizing P from 
the highly insoluble tricalcium phosphate, 
hydroxyl apatite and rock phosphate (Rodríguez 
and Fraga  1999 ; Owen et al.  2015 ). 

 A wide array of bacterial genera (e.g. 
 Pseudomonas ,  Burkholderia ,  Acidothiobacillus , 
 Bacillus  and  Paenibacillus ) are able to release 
potassium from minerals such as mica, illite, 
muscovite, biotite and orthoclases (Bennett et al. 
 1998 ,  2001 ; Liu et al.  2012 ), increasing K avail-
ability up to 15 % (Supanjani et al.  2006 ). 

 The search of new strains of microorganisms 
showing benefi cial effects for plant nutrition has 
fostered studies on species that were less consid-
ered in the past. Following, we present an over-
view of results and potentialities which could 
derive from the introduction of non-mycorrhizal 
fungi into biofertilizers. 

2.2.1     Potentialities of Non- 
Mycorrhizal Fungi 
as Inoculants for Biofertilizers 

 Fungi are ubiquitous in soil, and can be dominant 
components of the microbiota in many soil types 

(Gadd  2004 ; Burford and Gadd  2003 ). For exam-
ple, fertile soil may contain a fungal network up 
to 10,000 km/m 2  (Burford et al.  2003 ). By adapt-
ing their metabolism to the availability of vary-
ing nutritive compounds in the soil environment, 
fungi produce a wide range of oxidative and 
hydrolytic enzymes that allow them to effi ciently 
break down organic matter like ligno-cellulosic 
materials but also other natural or human-derived 
compounds, like in the fi eld of xenobiotic and 
organic pollutant degradation (Harms et al. 
 2011 ). 

 The plasticity of fungi biology and the pleth-
ora of functions that can be attributed to fungal 
metabolism suggest that there are several poten-
tial uses and forms of exploitation of non- 
mycorrhizal fungi for the production of 
biofertilizers. The ability of some fungal groups 
or species in the dissolution or leaching of miner-
als and elements’ chelation and translocation has 
been very little evaluated and even less exploited 
as a potential for the production of innovative 
soil amendments. 

 The biological activity of fungi can cause the 
enrichment of C, N, and S in the soil, making 
these as well as other nutrients available to plants. 
Moreover, fungi are capable of transporting sub-
stances in their hyphae that act as pipes connect-
ing microenvironments with different 
concentration of nutrients and can actually trans-
port ions against a chemical osmotic gradient 
(Banitz et al.  2011 ,  2013 ). Translocation across 
distant parts of the mycelium enables fungi to 
colonize places with low initial resource avail-
ability and to actively change the microenviron-
ment and the availability of nutrients in the 
substrates, turning the colonizing mycelium from 
a resource sink into a source (Banitz et al.  2011 , 
 2013 ). Jongmans et al. ( 1997 ) proposed that tun-
nels formed inside weatherable mineral grains 
were likely to have been formed by fungal hyphae 
and coined the term “rock-eating fungi” to 
describe such microscopic tunnels within feld-
spar and hornblende grains in the eluviated hori-
zon of podzol soils. Within soils, a vertical 
distribution can be distinguished regarding fun-
gal type in terms of their ecology (Pinzari et al. 
 2001 ). Organic layers are mostly colonized by 
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saprophytic fungi, whereas mineral layers are 
colonized by mycorrhizal fungi (Van Schöll et al. 
 2008 ). 

 Fungi can dissolve rocks and leach minerals 
by different mechanisms that involve the excre-
tion of H+, or the production of primary and 
secondary metabolites with mineral solubiliza-
tion or metal-chelating properties like sidero-
phores, phenolic compounds, carboxylic acids, 
and amino acids. The potential of some fungal 
species in the breakdown of mineral phosphates 
could be very high, as shown in some recent 

papers (Pinzari et al.  2012 ) (Fig.  2.1 ). Fungi are 
more effi cient than bacteria in P solubilisation, 
on both solid agar and in liquid cultures (Saxena 
et al.  2013 ). According to some authors, sub- 
culturing of most of the P-solubilizing bacteria 
results in the loss of the phosphate solubilizing 
activity (Halder et al.  1990 ) while fungi main-
tain their ability to leach P-containing rocks 
even after prolonged culturing (Kucey  1983 ). 
Such features could be important in the indus-
trial manufacturing of biofertilizers for P 
nutrition.

  Fig. 2.1    Precipitation of calcium oxalates by fi lamentous 
fungi and solubilization of P-containing minerals observed 
with a Zeiss EVO 50 variable pressure scanning electron 
microscope (VP-SEM) operating at an accelerating volt-
age of 20 kV equipped with a detector for backscattered 
electrons (BSE) (Pinzari et al.  2012 ): ( a ) bipyramidal 
structures of calcium oxalate produced in vitro by an 
 Aspergillus  ( A.terreus ); ( b ) energy dispersive spectros-

copy (EDS) spectra with chemical characterization of the 
crystals mainly containing Ca; ( c ) solubilization of apatite 
(P-containing minerals) by fungal hyphae ( Aspergillus 
niger ): tracks of dissolution of the mineral material are 
caused by fungal growth. In the tracks, around fungal 
threads other biogenic crystals are deposited. ( d ) X-ray 
area scan of the apatite that contains P and Ca. The y-axis 
on the spectra represents the EDS counts in arbitrary units       
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   P mobilization, particularly from Fe and Al 
phosphates, has been shown to be performed also 
by non-symbiotic fungi from different species of 
genera such as  Penicillium, Aspergillus , 
 Trichoderma ,  Mucor ,  Candida ,  Discosia , 
 Eupenicillium , and  Gliocladium  (Ahmed and 
Shahab  2009 ; Jain et al.  2012 ; Saxena et al.  2013 ; 
Wakelin et al.  2007 ; Whitelaw  2000 ). The solu-
bilizing ability of P minerals by the different 
organic acids produced by fungi also allows the 
mobilization of minerals other than phosphates 
(Achal et al.  2007 ; Ahmed and Shahab  2009 ; 
Asea et al.  1988 ). Esterase type enzymes released 
by fungi are known to be involved in liberating 
phosphorus from organic P compounds (Ahmed 
and Shahab  2009 ). 

 Fungal dissolution mechanisms can release 
also other cations like Si 4+ , Fe 3+ , Al 3+ , and Ca 2+  
(Boberg et al.  2009 ). In general, fungi are strong 
solubilizing agents of K containing minerals such 
as feldspar, biotite, and phyllosilicates by organic 
acid release (Ahmed and Shahab  2009 ; Gadd 
 1999 ; Sayer et al.  1995 ; Singhal et al.  1994 ). 
 Piloderma  was able to extract potassium and/or 
magnesium from biotite, microcline, and chlorite 
to satisfy plant nutritional requirements (Glowa 
et al.  2003 ). 

 Fungal cells can also represent elective sites 
for biogenic mineral precipitation. This is the 
case of calcite or metal oxalates precipitation, 
which would also infl uence the availability of 
phosphates for plants that have been widely doc-
umented as coupled to fungal growth in near- 
surface limestones (calcretes), calcic and 
petrocalcic horizons in soils (Gadd  2007 ). 
Reduced forms of metals (such as Ca, Cd, Co, 
Cu, Va, Mn, Zn, Ag, Ni, and Pb) can be precipi-
tated by many fungi within and around fungal 
cells (Gadd  2007 ). Mechanisms of fungal min-
eral weathering, translocation or bio- precipitation 
are still little known, but could represent useful 
tools especially in the perspective of using fungi 
in the formulation of biofertilizers aimed at 
improving soils’ chemical and structural proper-
ties as well as plant nutrition (Table  2.1 ).

   Table 2.1    Fungal properties that can be further explored 
for new biofertilizers   

 Fungal property 

 Potential applications 
for improving crop 
production 

 Examples or 
reference 
studies 

 Hyphae highly 
suited to growth 
across soil 
physical 
structure 
(surfaces, pores, 
and air gaps) 

 Fungi as highways 
or pipelines for 
nutrients 
translocation 

 Wick et al. 
( 2010 ), 
Furuno et al. 
( 2012 ), 
Banitz et al. 
( 2011 ,  2013 ) 

 Ability to 
develop in 
patchy 
environments 

 Improvement of 
soil fertility and 
treatment of 
extreme 
heterogeneous soils 
(i.e. saline soils) 

 Green et al. 
( 2008 ), 
Bashan and 
de-Bashan 
( 2010 ) 

 Translocation 
and 
redistribution of 
biogenic 
elements 

 Improvement of 
soil fertility 

 Boberg et al. 
( 2009 ) 

 Growth in low 
nutrient habitats 

 Widening the 
possibility of crop 
production in sites 
with low resource 
availability 

 Green et al. 
( 2008 ) 

 Dissolve rocks, 
leach minerals, 
precipitation of 
calcium oxalate 

 P solubilization and 
availability 

 Sudhakara 
et al. ( 2002 ), 
Kucey 
( 1983 ), 
Chuang et al. 
( 2007 ) 

 Si solubilization  Meena et al. 
( 2014 ), 
Pradhan and 
Sukla ( 2005 ) 

 Chitin as 
elective sites for 
biogenic 
mineral 
precipitation 

 Ca insolubilization  Gadd ( 2000 ), 
Burford et al. 
( 2003 ) 

 Toxic metals 
precipitation 

 Precipitation of 
reduced forms 
of metals (like 
Ca, Cd, Co, Cu, 
Va, Mn, Zn, Ag, 
Ni, and Pb) 
within and 
around fungal 
cells 

 The precipitation of 
metal oxalates may 
provide 
mechanisms that 
allow fungi 
tolerating high 
concentrations of 
toxic elements 

 Gadd ( 2007 ) 

 Gadd ( 2008 ) 

 Harms et al. 
( 2011 ), 
Fomina et al. 
( 2003 ,  2004 , 
 2005 ), 
Daghino et al. 
( 2010 ) 

 Degradation 
of organic 
compounds 

 Compost 
stabilization 

 Harms et al. 
( 2011 ), Gadd 
( 2008 ), Wick 
et al. ( 2010 ) 

 Organic pollutants 
decomposition 
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2.2.2        Fungal Inocula 
for Micronutrients 
Mobilization: The Case 
of Silicon 

 Lack of trace elements in soil is not uncommon 
(Bell and Dell  2008 ). However, the limitation of 
vital micronutrients can be attributed to some fac-
tors that reduce their availability for crops such as 
low organic matter content, high amounts of sand 
(soils with coarse textures), use of chemical fertil-
izers that change the equilibrium between soil 
fungi and bacteria as well as between the mineral 
substrates and microorganisms, or to other men-
aces that alter soil functions and  fertility (compac-
tion, desertifi cation, etc.) (Brevik and Burgess 
 2012 ). Although these elements could be abun-
dant in rocks, they are not always available to 
plants, as in the case of silicon (Si). Silicon is 
present in plants, and several studies have shown 
benefi cial effects of silicon fertilization for agri-
cultural crops (Belanger et al.  1995 ; Savant et al. 
 1997 ,  1999 ; Meena et al.  2014 ). The benefi cial 
effects seem mainly associated with Si deposition 
in plant tissues, which enhances their rigidity and 
resistance to mechanical stress. This increased 
strength improves the light-receiving posture of 
the plant, benefi ting photosynthesis, and enhances 
the resistance to biotic and abiotic stresses 
(Gascho  2001 ). Plants absorb silicon from the soil 
solution in the form of monosilicic acid, also 
called orthosilicic acid (H 4 SiO 4 ) (Meena et al. 
 2014 ). Typical silicon absorbers and accumulator 
crops are rice, wheat, millet, and sugarcane, which 
require a relative large amount of silicon. 
However, inorganic materials such as quartz, 
clays, micas, and feldspars, although rich in Si, 
are poor sources because of their low solubility 
(Meena et al.  2014 ). 

 Fungi and bacteria can solubilize insoluble 
silicates (Wainwright et al.  1997 ; De Mico et al. 
 2004 ). Fungi, while degrading silica-based rocks, 
can release other mineral nutrients (e.g. potas-
sium, iron and magnesium) (Daghino et al.  2010 ). 
The solubilization process occurs mainly via the 
production of organic and inorganic acids and 
complexing agents (Gadd  2008 ) and it is faster 
than that of bacteria (Castro et al.  2000 ; Gadd 

 2008 ; Daghino et al.  2010 ). The ability of 
 Aspergillus niger  in weathering olivine, serpen-
tine, feldspar and other minerals, of  Penicillium 
simplicissimum  disgregating basalt, of  Penicillium 
expansum  and  Scopulariopsis brevicaulis  solubi-
lizing alumino-silicates has been demonstrated 
(Daghino et al.  2010 ). The solubilization of silica 
by fungi (and bacteria) is considered as a source 
of supply for several crops such as cotton, maize, 
wheat, potato and tomatoes (Meena et al.  2014 ). 
Therefore, to fully exploit this capacity and ben-
efi t of Si nutrition by plants, further studies on 
application of bioinoculants for improving Si 
availability are needed. 

 From this general brief overview it appears 
that the availability of several benefi cial strains 
from the different groups of microorganisms is 
not hindering the possibility of formulating an 
effi cient biofertilizer.   

2.3     Factors Affecting the Effi cacy 
of Biofertilizers 

 The various mechanisms involved in plant pro-
motion may be host plant-specifi c and strain- 
specifi c. Furthermore, once introduced into the 
soil, plant growth promoting microorganisms 
(PGPM) face competitive conditions that may 
severely reduce their benefi cial effects (Bashan 
 1998 ). Therefore, the benefi cial effects deriving 
from the application of a specifi c biofertilizer 
may differ greatly under different agro- 
environmental conditions and this has resulted in 
contesting the effi cacy of microbial-based prod-
ucts (Cummings  2009 ; Owen et al.  2015 ). 
However, to overcome such perception and 
improve the propensity of farmers in using bio-
fertilizers, it is useful to consider which factors 
affect the effi cacy of biofertilizers on crop pro-
ductivity trying to meet the point of view of the 
farmers, who appraise the application of a biofer-
tilizer as for any other technical mean, on the 
base of its effi cacy. For practical purposes, we 
have grouped the factors that could mainly be 
considered as those mostly affecting biofertiliz-
ers effi cacy with relation to the plant, the soil, the 
farmers and the products themselves (Fig.  2.2 ).
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2.3.1       Factors Related to the Product 

2.3.1.1     Production Process 
 The production process of the inoculum is key to 
a fi nal high-quality product (Bashan et al.  2014 ), 
since there is a direct relationship between the 
population density of mother culture and the 
quality of the fi nal products (Stephens and Rask 
 2000 ). Commonly, the inoculum is formed of 
one strain. However, the understanding of the 
complex relationships among the microorgan-
isms interacting in the rhizosphere has fostered 
the study on inocula composed of more than one 
microorganism which have showed promising 
results both in legumes and non-legume plants. 
Successful examples, in case of legumes, com-
prised the co-inoculation of rhizobia with arbus-
cular mycorrhizal fungi (AMF) (Wang et al. 
 2011 ), dual inoculation of  Rhizobium  and phos-
phate solubilizing bacteria (Alagawadi and Gaur 
 1988 ), an inoculum formed of  Rhizobium  
together with a plant growth promoting rhizobac-
teria (PGPR) and a phosphorous solubilizing 
bacteria (PSB) (Prasad and Chandra  2003 ). In 
non-legumes, nutrients uptake comparable to 
chemically fertilized plants have been reported 
with dual inoculations involving AMF and free- 
living N-fi xing bacteria (Adesemoye et al.  2008 ; 
Barea et al.  2002 ; Lisette et al.  2003 ; Wang et al. 
 2011 ), also under dry conditions (Aseri et al. 
 2008 ). Consortia of AMF and different PGPR 
were benefi cial for different annual and horticul-
tural crops (Malusà et al.  2007 ; Wu et al.  2005 ), 
leading to a reduction of fertilizer application by 

up to 50 % (Singh and Adholeya  2003 ). Better 
nutrient effi cacy was reported also in the case of 
PSB and KSB mixture inocula (Han and Lee 
 2005 ; Vassilev et al.  2006a ). 

 When designing a consortium for a biofertil-
izer, it should be considered that certain bacterial 
groups appear to associate more frequently with 
AM fungi or to be inhibited by them by several 
mechanisms (Filion et al.  1999 ; Mansfeld-Giese 
et al.  2002 ; Sood  2003 ; Toljander et al.  2006 ; 
Vestergård et al.  2008 ; Wamberg et al.  2003 ), 
including the fungal release of stimulatory or 
inhibitory compounds (Johansson et al.  2004 ), 
which could result in a higher or limited coloni-
zation of the roots, respectively. Also the species 
specifi city of the strains, even in case of AMF, or 
the differences in adaptation to environmental 
condition should be considered when selecting 
strains to formulate a biofertilizer (Antunes et al. 
 2011 ; Zoppellari et al.  2014 ; Malusà et al.  2012 ). 

 A PGPM consortium could be more effi cient 
due to the different mechanisms of action of the 
various microorganisms present, sometimes 
overlapping also plant protection mechanisms 
(e.g. Vassilev et al.  2001 ,  2006b ), which tend to 
match the requirements of both farmers, in using 
“multifunctional” products, and manufacturers, 
preferring to market a product for several pur-
poses. A potential example of such kind of prod-
uct could be that patented in the USA by Reddy 
and Janarthanam ( 2014 ) or already marketed in 
Europe under the brand name Micosat (CCS 
Aosta). However, not always the effi cacy of con-
sortia has proven to be consistent, and also their 
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  Fig. 2.2    Major factors 
affecting the effi cacy of 
biofertilizers in improving 
crop nutrition, growth and 
yield       
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production and commercialization raises some 
technical problems (Herridge  2008 ; Stephens and 
Rask  2000 ). This could derive from the observa-
tion that a key aspect determining the relation-
ship of microorganisms with plants is not their 
taxonomic diversity, but rather their functional 
diversity (Nannipieri et al.  2003 ; Maherali and 
Klironomos  2007 ). 

 A suffi ciently long shelf life of the inoculant 
(up to at least one season), maintaining its bio-
logical traits at an adequate level, is key for 
assuring the effi cacy of the biofertilizer, though 
being a major challenge for any kind of formu-
lated product (Bashan et al.  2014 ). Therefore, the 
formulation of the inocula, i.e. a multistep pro-
cess which results in mixing one or more strains 
of microorganisms (inoculum) with a particular 
carrier, with or without additives (e.g. sticking 
agents or other additives), plays an important role 
in assuring the effi cacy of the biofertilizer. It 
allows the protection of the cells during storage 
and transport, possibly enhancing the persistence 
of the inocula in soil, in order to obtain the maxi-
mal benefi ts after inoculation of the host plants 
(Manikandan et al.  2010 ; Schoebitz et al.  2012 ). 

 Different carriers can be used in the formula-
tion process, and each of them presents specifi c 
positive qualities and drawbacks, affecting thus 
the overall quality and effi cacy of the biofertiliz-
ers (Bashan et al.  2014 ; Herrmann and Lesueur 
 2013 ; Herridge  2008 ; Malusà et al.  2012 ). 
Nevertheless, granular inoculants are showing 
better results under harsh soil conditions (Clayton 
et al.  2004 ; Lupwayi et al.  2006 ; Rice et al.  2000 ). 
Liquid inoculants, though easier to distribute, 
have shorter shelf life (Bashan et al.  2014 ; Date 
 2001 ; Stephens and Rask  2000 ). Encapsulation 
into polymers, though theoretically allowing 
very diverse compositions and structures 
(Vassilev et al.  2005 ), has been mainly limited in 
practice to formulations based on alginate, which 
still presents some limitations for industrial pro-
duction (Bashan et al.  2014 ; John et al.  2011 ). 

 Besides the various additives used to improve 
the shelf life of the product (Bashan et al.  2014 ; 
Malusà et al.  2012 ; Herrmann and Lesueur  2013 ), 
specifi c compounds can be introduced into the 
formulation to enhance the effi cacy of biofertil-

izers. Legume biofertilizers containing elicitors 
of nodulation are already marketed (Mabood 
et al.  2006 ; Skorupska et al.  2010 ; Smith and 
Smith  2012 ), but other rhizobial metabolites 
related to the nodulation process (Nod factors) 
were successful in enhancing the performance of 
N-fi xing bacteria inoculants on soybean and 
maize (Marks et al.  2013 ). Strigolactones, also in 
the form of synthetic analogous, could be used to 
foster the establishment of the mycorrhizal sym-
biosis (Ruyter-Spira et al.  2011 ; Xie et al.  2010 ).  

2.3.1.2     Marketing of Biofertilizers 
and Quality Standards 

 The development of a new kind of products based 
on microorganisms is requiring a general agree-
ment on the defi nition of the terminology or name 
used. Frequently, in the scientifi c literature the 
term ‘biofertilizer’ has been used to describe a 
simple microorganism showing plant growth pro-
motion effects (Bardi and Malusà  2012 , and refer-
ences therein). However, as mentioned above, to 
be used within agronomical practices, any benefi -
cial microorganism (inoculum) requires to be for-
mulated to allow the effective delivery to the soil 
or plant. Along with the increased understanding 
of the mechanisms of action of the different kinds 
of benefi cial microorganisms, the term biofertil-
izer has been defi ned in different ways (Okon and 
Labandera-Gonzalez  1994 ; Vessey  2003 ; Fuentes-
Ramirez and Caballero-Mellado  2005 ), some-
times associating also a confusing terminology 
that does not take into consideration the legal defi -
nitions in place for other kinds of fertilizers or 
amendments (Owen et al.  2015 ). Recently, in an 
effort to propose a defi nition that could be useful 
also for regulatory purposes, Malusà and Vassilev 
( 2014 ) have proposed to defi ne biofertilizers, in 
analogy to the mineral or organic fertilizers, as 
“the formulated product containing one or more 
microorganisms that enhance the nutrient status 
(the growth and yield) of the plants by either 
replacing soil nutrients, and/or by making nutri-
ents more available to plants and/or by increasing 
plant access to nutrients”. An agreed, legally 
binding, defi nition of these products, as well as 
the establishment of minimum legal standards for 
registration and marketing of biofertilizers are 

E. Malusà et al.



25

also important to assure a minimum quality stan-
dard, which is another factor affecting the effi cacy 
of biofertilizers’ fi eld performance. Indeed, it 
seems that the quality of biofertilizers has not 
been improving in the last few decades. Surveys 
carried out in the 1990s on products containing 
rhizobia showed a high level of contamination, 
with alien bacteria outnumbering the rhizobia in 
the great majority of products (Olsen et al.  1994 , 
 1996 ). A similar situation emerged from a recent 
survey where 40 % of 65 tested commercial bac-
terial products (formulating also PSB and free- 
living N-fi xing strains) did not contain the claimed 
strain, but only contaminants (Herrmann and 
Lesueur  2013 ). The situation does not appear 
more promising in case of AMF-based biofertil-
izers: surveys of products showed a very low 
quantity of viable propagules and reduced coloni-
zation potentials (Corkidi et al.  2004 ; Faye et al. 
 2013 ; Rowe et al.  2007 ; Tarbell and Koske  2007 ). 
Such frauds, together with insuffi cient label infor-
mation, are probably the major reason for incon-
sistency of outcomes in fi eld use of biofertilizers 
and are thus causing a lack of confi dence in this 
kind of products which is affecting their market 
potential (Bhattacharyya and Jha  2012 ; Gemell 
et al.  2005 ; Husen et al.  2007 ). Marketing of bio-
fertilizers should thus be regulated assuring a 
minimum quality standard of the fi nal product 
(Herrmann and Lesueur  2013 ; Malusà and 
Vassilev  2014 ). 

 The distribution chain can also further affect 
the overall quality of biofertilizers. Indeed, sev-
eral studies have demonstrated the decline of 
microbial populations in inoculants over time, 
particularly under non-optimal storage condi-
tions, resulting in lower inoculation effi ciency 
(Biederbeck and Geissler  1993 ; Maurice et al. 
 2001 ) and reduced quality (Hartley et al.  2005 ).  

2.3.1.3     Persistence and Inoculant 
Traceability in Soil: Need 
for a Standard Method 

 The assessment of the persistence and traceabil-
ity in soil of the strains applied with biofertilizers 
can be very diffi cult to investigate due to the 
complex web of microorganisms present in the 
soil and the rhizosphere, which can exceed hun-

dred million units (Torsvik and Ovreas  2002 ), 
and the high variability of the microbial commu-
nities which refl ects ecological, environmental 
and structural soil characteristics, as well as the 
large variety of agricultural management systems 
(see headings below). Therefore, no single quali-
tative and quantitative approach of traceability 
can capture the persistence of a bioinoculant in 
soil because of the variety of organisms marketed 
as biofertilizers. This raises questions about 
which methods should be considered suitable to 
monitor the persistence of the different inocu-
lated strains. Such information is fundamental to 
evaluate the success of inoculation, thus helping 
to fi ne tune its application strategy. There is a 
perceived need for accurate and standard meth-
ods that can identify and trace the inoculants in 
soils. 

 During the past two decades, phenotypic and 
PCR-based methods have been developed to bet-
ter characterize the structure, dynamics and 
diversity of soil microbial communities. The dif-
ferent methods address different questions, and 
therefore can all be suitable for the monitoring of 
the effects in soil due to the introduction of bioin-
oculants, and to give a picture of different aspects 
of the microbial community. For the detection of 
microorganisms released in the environment, 
molecular methods based on PCR techniques that 
use natural genome polymorphism have largely 
facilitated and allowed the discrimination at the 
strain level, of natural and introduced organisms, 
minimizing the costs and the time efforts (Öpik 
et al.  2010 ; Stockinger et al.  2010 ; Sýkorová 
et al.  2012 ). There are several molecular DNA 
fi ngerprinting methods that can be adopted to 
probe the inoculated strains, but they are mainly 
qualitative and not quantitative. Among the 
culture- independent methods available, com-
monly used to investigate soil microbial commu-
nities, traditional molecular fi ngerprinting, 
sequencing, or combination of different 
approaches can be used (Trabelsi and Mhamdi 
 2013 ; Schwieger and Tebbe  2000 ; Hirsch et al. 
 2010 ; Han et al.  2012 ). 

 The fi ngerprinting method, based on universal 
bacterial primers, was found not suffi cient to dis-
criminate between non-native and native micro-
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organism when used singly (Pellegrino et al. 
 2012 ). However, combining a community level 
fi ngerprinting approach such as T-RFLP, with 
phylogenetic strain identifi cation after a culture- 
dependent approach, proved to be a sound 
approach to highlight differences in community 
structure and at the same time to track inoculants 
(Pellegrino et al.  2012 ). To widen the under-
standing of the effect of the inoculant on the 
autochthonous microbial community, the real- 
time PCR with probes targeting the genes of 
interest, together with quantifying their copy 
number, can provide information on the relative 
abundance of the introduced strains within the 
microbial community; this approach could be 
used to follow the dynamics of the microbial 
community after the application of the biofertil-
izer (Babić et al.  2008 ). 

 The molecular marker-assisted approach, 
such as T-RFLP, DGGE, TGGE, can also be par-
ticularly useful for monitoring purposes. The 
combination of two culture-independent methods 
can allow assessing the persistence of microbial 
inoculants introduced in the soil, also evaluating 
at the same time, the possible changes occurring 
at species level for native strains. In this case, the 
community-level fi ngerprinting profi le can be the 
preliminary method that allows to defi ne the size 
of the clone library and the sequencing analysis. 
Nevertheless, in order to avoid inconsistent 
results due to the spatial heterogeneity of soil 
microbial populations, either horizontally or ver-
tically, the soil sampling protocol shall follow a 
methodology that considers such variability. 
Successful examples of the application of such 
methodology can be found in some recent papers. 
Combining a community-level T-RFLP analysis, 
with phylogenetic strain identifi cation by culture- 
dependent approach, made tracking the inocu-
lants possible (Pellegrino et al.  2012 ). The tracing 
of an inoculated AMF isolate in the roots of tar-
get plants was carried out on the base of a nested 
PCR protocol (Sýkorová et al.  2012 ). 
Habteselassie et al. ( 2013 ) used, for the purpose 
of AMF tracing, the PCR amplifi cation of a tar-
get gene followed by clone-assisted or direct 
sequences analysis. A PCR coupled with a novel 
combination of NS31 and Glomeromycota- 

specifi c LSUClom1 primers targeting the nuclear 
rDNA cistron, and classifi ed amplicons by 
T-RFLP were designed to trace two inoculants of 
arbuscular mycorrhizal fungi discriminating 
them from native strains in roots up to two year 
post-inoculation (Pellegrino et al.  2012 ). 
Ceccarelli et al. ( 2010 ) used sequencing to better 
trace AMF applied strains showing that the 
marker-assisted fi ngerprinting analysis and the 
associated cloning and sequencing approach rep-
resents a multi-approach effective method for 
traceability of inoculants in soil.   

2.3.2     Factors related to the plant 

 The plants can exert a signifi cant effect on the 
strain(s) forming the biofertilizer and on their 
effi cacy in promoting growth and yield, which 
are intimately related to the plant physiological 
status and phenological phase of growth. Indeed, 
depending on their nutritional status, plants can 
modify the release of compounds from the roots 
resulting in both quantitative and qualitative dif-
ferences in rhizodeposits (Hartmann et al.  2009 ; 
Uren  2007 ), varying in time and space with 
respect to the position on the root (Dennis et al. 
 2010 ) and growth stage (van Overbeek and van 
Elsas  2008 ), which can lead to the selection of 
specifi c rhizosphere bacterial communities 
(Paterson  2003 ; Marschner et al.  2004 ; Marschner 
and Timonen  2005 ). Furthermore, root exudates 
contain compounds with stimulatory and inhibi-
tory effect on rhizosphere microorganisms that 
affect their capacity of establishing benefi cial 
relations with the plant (Hartmann et al.  2009 ; 
Bais et al.  2006 ). Under P-defi ciency, plants 
release more chemical signals stimulating hyphal 
branching (Akiyama et al.  2005 ) and coloniza-
tion (Akiyama et al.  2002 ) of AM fungi than 
under P-suffi cient conditions. Plants can also 
infl uence the functions of soil microorganisms, 
such as nitrifi cation (Smits et al.  2010 ). However, 
root exudates from a long-term monoculture of 
soybean had little effect on the nitrifi er commu-
nity, but reduced nitrifi cation in the rhizosphere; 
in contrast, total AMF hyphal length was signifi -
cantly stimulated by the increased release of 

E. Malusà et al.



27

genistein (Wang et al.  2012 ), a phenylpropanoid 
compound probably involved in the chemical 
signaling leading to AMF root colonization 
(Cesco et al.  2010 ). Phenolic acids, also exuded 
by roots, are responsible for the shift in soil 
microbial communities (Qu and Wang  2008 ). 

 However, it has been suggested that rhizo-
sphere microbial communities respond to other 
rhizosphere carbon pools (e.g. microbial exu-
dates) for the majority of their coexistence with 
their plant host, thus limiting in reality the role of 
rhizodeposits in shaping the rhizosphere micro-
bial community (Dennis et al.  2010 ), therefore 
also of the strains inoculated with the biofertil-
izer. Nonetheless, root exudates are likely to be 
of great importance in initiating the rhizosphere 
effect in very young seedlings and on emerging 
lateral roots. In this respect, the application of 
biofertilizers on seeds and seedlings would 
increase the effi cacy of the treatment.  

2.3.3     Factors Related to Soil 
Conditions 

2.3.3.1     Abiotic Interactions 
 Soil chemical (pH, nutrient content) and physical 
(texture) characteristics have been found to shape 
both bacterial and fungal communities (Girvan 
et al.  2003 ; Fierer and Jackson  2006 ; Lauber 
et al.  2008 ; Marschner et al.  2004 ). Soil pH has 
been found to be the most important predictor of 
bacterial community structure at the ecosystem 
level, with higher diversity associated with neu-
tral soils and lower diversity in acidic soils, likely 
due to the relatively narrow pH growth tolerance 
of bacterial taxa (Fierer and Jackson  2006 ; Rousk 
et al.  2010 ). The fi eld surveys of AMF communi-
ties in a wide range of soil pH suggest that it is 
also the major driving force for structuring these 
communities (Dumbrell et al.  2010 ; Wang et al. 
 1993 ), thus affecting the colonization potential, 
and effi cacy, of all kinds of PGPM included in 
biofertilizers. Adaptations of AMF to abiotic fac-
tors such as soil temperature and nutrient avail-
ability can strongly infl uence the effect of the 
AMF symbiosis on plant growth (Treseder and 
Allen  2002 ; Antunes et al.  2011 ).  

2.3.3.2     Interaction 
with Autochthonous Soil 
Microorganisms 

 When introduced into the soil, the biofertilizer 
strain(s) face the competition from indigenous 
microorganisms. However, the knowledge of the 
ecological interactions among soil microorgan-
isms and about the impact of those included into 
biofertilizers with the soil microbial populations 
are still limited and do not allow to effectively 
predict the effect of inoculants introduced with 
the biofertilizers. Nevertheless, there is a great 
effort in evaluating these interrelationships and 
their impact on biofertilizers effi cacy, both on the 
short- and long-term, using methods such as the 
analysis of soil microbial biomass, soil microbial 
activity, soil microbial community structure and 
diversity (Trabelsi and Mhamdi  2013 ). It has been 
demonstrated that inoculation with products con-
taining different PGPM (e.g. fl uorescent pseudo-
monad, symbiotic and free-living N-fi xing 
bacteria, AM fungi, etc.) affects in different ways 
various taxonomical or functional groups of 
autochthonous soil microorganisms. The applica-
tion of inocula based on N-fi xing bacteria was 
either increasing (Trabelsi et al.  2011 ) or strongly 
reducing the local bacterial community structure 
and diversity (Trabelsi et al.  2012 ), also when the 
inoculation was carried out with a consortia of 
strains (Naiman et al.  2009 ; de Salamone et al. 
 2010 ). A symbiotic N-fi xing strain was shown to 
particularly affect a specifi c group of 
Proteobacteria (Robleto et al.  1998 ). Many stud-
ies have confi rmed a high degree of specifi city of 
the bacteria species associated with the AMF that 
was refl ected on the increased presence of these 
species after inoculation with AMF (Albertsen 
et al.  2006 ; Olsson et al.  1996 ; Marschner and 
Timonen  2006 ). However, inoculation with AMF 
also signifi cantly affected the general develop-
ment of rhizospheric bacterial and fungal biomass 
(Linderman  1988 ). Once established successfully, 
introduced AMF showed to decrease the species 
richness of indigenous AM fungal communities in 
host roots (Koch et al.  2011 ). 

 The selection of strains expressing features 
that support the colonization process, and the 
“fi ght” for the roots’ environment, is key to 

2 Effi cacy of Biofertilizers: Challenges to Improve Crop Production



28

assure the effi cacy of any biofertilizer. In this 
respect, quorum sensing confers an enormous 
competitive advantage on bacteria, improving 
their chances to survive (e.g. through biofi lm for-
mation) and the ability to explore more complex 
niches (Gera and Srivastava  2006 ) even by 
‘swarming’ (i.e. moving in the soil owing to 
motility – Fray  2002 ). Such characteristics are 
strongly related to the need of assuring a mini-
mum population level of the initial PGPR inocu-
lum to promote plant growth (Persello-Cartieaux 
et al.  2003 ). 

 The effi cacy of the biofertilizers seems to be 
also mediated by protozoan grazing, particularly 
by naked amoeba, which is the most important 
bacterial grazer in soil (Bonkowski  2004 ). An 
increase of the bacterial and fungal feeding nem-
atodes population was observed after application 
of a biofertilizer composed on both AMF and 
PGPR (Malusà et al.  2012 ). Wheat rhizosphere 
colonization by two  Pseudomonas  species and 
 Bacillus subtilis  was substantially reduced by 
three species of nematodes ( Caenorhabditis ele-
gans ,  Acrobeloides thornei  and  Cruznema  sp.) 
(Knox et al.  2003 ). 

 However, it must be underlined that the 
observed relationships between indigenous and 
introduced microorganisms would depend 
largely on the techniques used to address the 
dynamics of soil microbial communities (Trabelsi 
and Mhamdi  2013 ). Indeed, although the number 
of microbial taxa could be clearly identifi ed 
through novel metagenomic approaches com-
bined with culture-dependent method, it is still 
very diffi cult to identify which functions are 
attributable to a specifi c microorganism or group, 
what are the metabolic potential of soil microbial 
communities in response to inoculation, and what 
is the link between the effects on soil microbial 
communities structure and the functional capa-
bilities of soil microbial population. The study of 
genes coding for important enzymatic activities 
or key genes in the interaction process between 
the inoculant and native microbial population 
may contribute to gain such knowledge, which 
could unveil possible functions for the applica-
tion of biofertilizers specifi cally designed for 
particular soil/crops.   

2.3.4     Factors Related to Farmers’ 
Practices 

2.3.4.1     Fertilization 
 Fertilization is surely the agronomical practice 
that affects the effi cacy of biofertilizers the most. 
The application of large quantities of mineral fer-
tilizers has profound effects on soil microorgan-
isms (Gosling et al.  2006 ; Johansson et al.  2004 ) 
and is thus expected to strongly affect the inocu-
lated ones. Long-term application of mineral 
nitrogen has been shown to reduce soil microbial 
activity, with both quantitative and qualitative 
effects on soil bacterial and AMF communities 
which negatively impacted natural mycorrhizal 
colonization of roots (Mäder et al.  2002 ; Johnson 
et al.  2005 ; Hartmann and Widmer  2006 ; Oehl 
et al.  2004 ; Toljander et al.  2008 ). P-accumulation 
in the soils due to 10-year (Jensen and Jakobsen 
 1980 ) or 90-year application of P fertilizers 
(Cheng et al.  2013 ) or irrigation with wastewater 
(Ortega-Larrocea et al.  2001 ) decreased the spore 
density, colonization and communities of AM 
fungi. However, a lower level of differences was 
observed in sporulating AMF diversity despite 
70 years of different soil fertilization regimes 
(Antunes et al.  2012 ). Duan et al. ( 2010 ) found 
low AMF colonization levels in maize, soybean, 
and wheat grown on fertilized soils. The kind of 
nitrogen fertilizer used can also impact on the 
AMF community: the occurrence of  Glomus intr-
aradices , a nitrophilic taxon (Jumpponen et al. 
 2005 ), among the most frequent taxa in arable 
soils (Hijri et al.  2006 ), was drastically reduced 
by ammonium nitrate while it was favored by 
calcium nitrate inputs (Toljander et al.  2008 ). 
However, in case of AMF, it has been suggested 
that the fertilizer rate might have a larger impact 
than fertilizer nature, mineral or organic, under 
some conditions (Beauregard et al.  2013 ). 

 Nevertheless, in terms of expected effi cacy of 
AMF-based biofertilizers, it is important to con-
sider that the overall fertility of the soil is sup-
posed to regulate the kind of relation between the 
AMF and the plant. According to the trade bal-
ance model (Johnson  2010 ), parasitic, commen-
salism or mutualistic outcomes in the AMF 
symbiosis might be determined according to the 
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relative abundance or availability of N and P and 
their interaction with carbon supply and demand 
among plants and fungi. When N and P are avail-
able in suffi cient amounts, then AM fungi are 
more likely to cause growth depression; on the 
other hand with suffi cient N availability, but lim-
ited P, the plant benefi ts from the mutualistic 
symbiosis (Johnson  2010 ). 

 Organic fertilizers generally affect rhizo-
sphere microorganisms positively, though this is 
not necessarily a favorable condition for inocula 
introduced with biofertilizers. Root colonization 
by AMF and development of AM fungal mycelia 
in soil can be stimulated by amendment of differ-
ent organic substrates (Gryndler et al.  2005 , 
 2006 ). Manure application can induce a general 
increase of bacteria and AMF richness 
(Esperschutz et al.  2007 ; Toljander et al.  2008 ), 
but can differently impact on specifi c groups of 
rhizosphere microorganisms such as denitrifying, 
aerobic N-fi xing or sulfate reducing bacteria 
(Enwall et al.  2005 ). Compost treatments 
increased the frequency of Gram-positive bacte-
ria to more than 80 % of total isolates and to a 
major frequency of rhizobacteria populations 
exhibiting PGPR characters (Viti et al.  2010 ). 
Application of two liquid organic fertilizers, 
derived from alternative sources of organic mat-
ter (a stillage and a vermicompost extract), with 
strikingly different composition and nature, dif-
ferentially affected the size and biodiversity of 
rhizospheric Archaea and Eubacteria populations 
even after a short period of the plant growth, in 
contrast with common mineral fertilizers 
(Canfora et al.  2015 ). However, not all organic 
fertilizers can exert positive effects on AMF 
 bioinoculants. Sewage sludge applications, for 
example, proved to reduce AMF richness and 
strongly altered the local bacterial community 
(Esperschutz et al.  2007 ; Toljander et al.  2008 ). 

 Considering that higher effi cacy of coloniza-
tion and activity of PGPM is expressed under low 
nutritional conditions, it is thus advised to reduce, 
but not to eliminate, the quantity of chemical fer-
tilizers applied to favor the establishment of 
inoculated strain(s). A reduction by 20–50 % of 
chemical fertilizers has been proved feasible with 
several crops (Adesemoye et al.  2009 ; Jeffries 

et al.  2003 ). A medium level of N fertilization 
resulted in a higher N uptake from mycorrhizal 
plants with respect to high or low N fertilization 
rates (Azcón et al.  2008 ). In case of PGPR, when 
two strains of  Pseudomonas fl uorescens  were 
tested on wheat in combination with varying lev-
els of N, P, and K (at 0, 25, 50, 75, and 100 % of 
recommended doses), the effi cacy was reduced 
with the increasing rates of NPK added to the soil 
and the maximum nutrient use effi ciency was 
recorded with the 25 % of recommended NPK 
fertilizers dose (Shaharoona et al.  2008 ). 

 The use of biofertilizers can also allow utiliz-
ing different inorganic fertilizers, with lower 
nutrient availability, thus cheaper for farmers in 
comparison to synthetic fertilizers. For example, 
co-inoculation of PSB and KSB together with 
direct application of phosphate and potassium 
rocks, characterized by low solubility, increased 
yield and N, P and K uptake with different vege-
table plants grown on soils defi cient in P and K 
(Han and Lee  2005 ; Supanjani et al.  2006 ; 
Vassilev et al.  2006a ).  

2.3.4.2     Other Soil Management 
Practices 

 The structure of the soil microbiome is generally 
infl uenced by agricultural management practices 
(Bernard et al.  2012 ; Lumini et al.  2011 ; Reeve 
et al.  2010 ; Watt et al.  2006 ), with contrasting 
effects when comparing intensive and more 
environmental- friendly systems: the higher the 
management intensity (i.e. high inorganic fertil-
ization, no rotation, deep tillage) the lower the 
microbial diversity (Franke-Snyder et al.  2001 ; 
Jansa et al.  2002 ,  2003 ; Oehl et al.  2003 ,  2004 ). 
Twenty years of organic management altered soil 
bacterial and fungal community structure com-
pared to continuous conventional management 
with the bacterial differences caused primarily by 
a large increase in diversity (Berthrong et al. 
 2013 ). Practices, such as tillage, pest manage-
ment, combined mineral and organic fertiliza-
tion, and water regime can modify the effi cacy of 
AMF inoculation (Lumini et al.  2011 ; Van Der 
Gast et al.  2011 ; Malusà et al.  2013 ; Alguacil 
et al.  2014 ). Regular disturbance by plowing in 
the arable soils strongly reduce AMF survival 
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(Helgason et al.  1998 ). Furthermore, some AMF 
taxa like  Acaulospora ,  Gigaspora ,  Paraglomus , 
and  Scutellospora  appear to be more sensitive to 
some soil management practices (e.g. tillage) 
(Hijri et al.  2006 ; Maherali and Klironomos 
 2007 ) probably due to fewer intramycelial anas-
tomoses (hyphal fusions) with respect to  Glomus  
species (De La Providencia et al.  2005 ), a feature 
that could lead to using different species for bio-
fertilizers adapted to specifi c crops. Several 
investigations on the diversity of AMF commu-
nities in conventional versus low input agricul-
tural sites concluded that the status of nutrients 
and soil disturbance play a more infl uential role 
in homogenizing fungi diversity than any differ-
ences due to the employed farming systems 
(Franke-Snyder et al.  2001 ; Viti et al.  2010 ). 

 Finally, when considering the practice of sub-
strate preparation for potted crops (e.g. in nurs-
ery), it was found that the characteristics of the 
peat used could differently affect root coloniza-
tion by AMF (Linderman and Davis  2003 ; Ma 
et al.  2007 ).  

2.3.4.3     Application Methods 
 Farmers need to better understand how microor-
ganisms are acting in soil in order to learn the 
appropriate methods to perform a successful crop 
inoculation (Date  2001 ). The method of applica-
tion can indeed affect the performance of the bio-
fertilizer (Deaker et al.  2004 ). However, very 
little work has been done to assess and optimize 
the application of biofertilizers, in order to meet 
the farmers’ requirement of using technologies 
already available in the farm or to verify how 
much the application method utilized can affect 
the viability of the distributed inocula (Bashan 
et al.  2014 ; Malusà et al.  2012 ). Among the few 
efforts in this regard can be mentioned by the 
development of machines to apply biofertilizers 
having different physical form (Malusà and Sas 
Paszt  2009 ). 

 The already available machines can be nor-
mally used to distribute biofertilizers, particu-
larly granulated formulations. However, some 
machines have been developed for their distribu-
tion, by small adaptation of existing machines to 
be used in horticultural crops (Wawrzyńczak 

et al.  2011 ), or for specifi c purposes, e.g. to inject 
a slurry containing AMF to inoculate big trees 
(Symbiom© Inject System), which have shown 
to support a better performance of the biofertil-
izer (Hołownicki  2014 ). Application of inocu-
lants by seed treatment or in furrows by mixing 
the inocula with soil or vermicompost provided 
comparable effi cacy with regard to grain and 
straw yields in  Cicer  (Bhattacharjya and Chandra 
 2013 ). The application of liquid formulations 
with a normal sprayer based on hydraulic atomi-
zation system only slightly affected bacteria via-
bility, but a prolonged working time reduced the 
amount of living cells up to 50 % (Świechowski 
et al.  2012 ). Effect of water volume and adju-
vants were also affecting the amount of spores 
delivered and their effi cacy in case of a fungus 
(Bailey et al.  2007 ). Foliar application can also 
be considered for PGPM application, particularly 
for endophytic species. Examples of growth and 
yield promotion using of such application method 
were demonstrated with several fruit species 
(Esitken et al.  2003 ; Pirlak et al.  2007 ; Sudhakar 
et al.  2000 ). 

 Since the recovery of the inoculated strains in 
the soil or on root rhizosphere was found to be 
limited to 30–40 days after inoculation in case of 
PGPR (Bashan et al.  1995 ), it would be more 
effi cient to foresee repeated applications (2–4) 
during the growing season, with an interval of 
3–4 weeks. This is not considered an additional 
drawback for biofertilizers in comparison to the 
inorganic ones, since normally, even for cereal 
crops, at least two fertilization treatments are per-
formed, also to fulfi ll legal requirements or qual-
ity standards (e.g. Directive 676/91/CE 
concerning the protection of waters against pol-
lution by nitrates).    

2.4     Conclusion 

 The global market for biofertilizers was esti-
mated to be worth about fi ve billion USD in 2011 
and is forecasted to double by 2017 
(Marketsandmarkets  2013 ), actively in Latin 
America, India and China (Fuentes-Ramirez and 
Caballero-Mellado  2005 ; Bashan and de-Bashan 
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 2010 ; Bashan et al.  2014 ). Improvement of qual-
ity standards of production and a clear legal 
framework that guarantees both manufacturers 
and farmers are needed to sustain such potential 
economic development. 

 Considering that, in general, 60–90 % of the 
total applied fertilizer is lost and only 30–50 % of 
applied N fertilizers and 10–45 % of P fertilizers 
are taken up by crops (Adesemoye et al.  2008 , 
 2009 ), the application of biofertilizers can play a 
key role to develop an integrated nutrient man-
agement system, sustaining agricultural produc-
tivity with low environmental impact (Adesemoye 
et al.  2009 ; Adesemoye and Kloepper  2009 ; 
Malusà and Sas Paszt  2009 ). However, even 
though in some cases the application of biofertil-
izers resulted in an increased yield over respec-
tive un-inoculated controls in the presence of 
100 % of recommended fertilizer doses, we 
believe that a valid target for this practice would 
be reaching the same crop productivity obtained 
without biofertilizers, but with a signifi cant 
reduction of mineral fertilizers use. Biofertilizers 
have the potential to help reducing the buildup, 
leaching, or runoff of nutrients from fi elds when 
used in the framework of an integrated nutrient 
management system, participating in nutrient 
cycling and benefi ting crop productivity (Singh 
et al.  2011 ). It has been demonstrated that such 
approach, combining in different ways, depend-
ing on the crops, the use of organic fertilizers and 
no or limited tillage, is promising and can sup-
port an economically and environmentally sus-
tainable management of the crops (Adesemoye 
et al.  2009 ; Grzyb et al.  2012 ;  2013 ). 

 More impetus for a wider and effective use of 
biofertilizers can derive from recent knowledge 
on microorganisms and technological develop-
ment. Use of strains cooperating with autochtho-
nous microorganisms, such as endophytic 
bacteria (Reinhold-Hurek and Hurek  2011 ; Ryan 
et al.  2008 ), or exploiting the synergies with 
microbial communities (Bernard et al.  2012 ), as 
well as the inclusion of protozoa in the formula-
tion of biofertilizers (Bonkowski  2004 ; Ronn 
et al.  2002 ) could also be key for the develop-
ment of new kinds of biofertilizers. The observa-
tion that dimethyl sulfi de, a volatile organic 

compound, is released by legumes to attract nem-
atodes that transport rhizobia toward the roots is 
also supporting a wider use of the different 
microorganisms forming the soil web (Horiuchi 
et al.  2005 ). 

 New kinds of biofertilizers can benefi t from 
the inclusion in the inoculum of yeasts, since iso-
lates from genera such as  Williopsis , 
 Saccharomyces ,  Candida ,  Meyerozyma  and 
 Pichia  have been shown to promote plant growth 
and nutrition with different crops (Amprayn et al. 
 2012 ; Agamy et al.  2013 ; El-Tarabily and 
Sivasithamparam  2006 ; Xiao et al.  2013 ) also 
with an integrated nutrient management (Nakayan 
et al.  2013 ). 

 The use of non-obligate endosymbiont mycor-
rhizal fungi, of the order Sebacinales, could ease 
the production process of this kind of biofertiliz-
ers, which have shown benefi cial effect also in 
association with PGPR and with non- mycorrhizal 
species (Kumar et al.  2012 ). 

 New kind of additives could derive from bio-
logical substances that are involved in the coloni-
zation of roots such as the strigolactones synthetic 
analogs for the AMF–plant symbiosis (Ruyter- 
Spira et al.  2011 ), or that can support the root 
colonization by inoculated microorganisms such 
as vitamins (Palacios et al.  2014 ). 

 Biofertilizers could also be developed for in- 
vitro grown plant material leading to enhanced 
growth of seedlings, being more resistant to 
biotic and abiotic stresses (Sekar and Kandavel 
 2010 ), as well as for their quantitative and/or 
qualitative enhancement of plant secondary 
metabolites content in medicinal plants (Zubek 
et al.  2012 ). 

 From the data presented, it emerges that the 
several biotic, abiotic and anthropogenic factors 
pose challenges in successful application of com-
mercial biofertilizer and are responsible for the 
effi cacy of the biofertilizers as a fi eld practice. 
Mathematical simulations showed that the most 
signifi cant factors affecting PGPR survival, and 
thus the ability of providing benefi cial effect to 
plants, were the competition with autochthonous 
bacteria, the compatibility with the exuded com-
pounds by the plant host (rhizodeposition) and 
their ability to utilize them (Strigul and 

2 Effi cacy of Biofertilizers: Challenges to Improve Crop Production



32

Kravchenko  2006 ). On the other hand, there are 
several tools and actions which can be already 
utilized and implemented to improve the fi eld 
effi cacy of biofertilizers. The assurance of effi -
cacy for a biofertilizer in a particular soil with a 
specifi c variety of crop is thus a complex task, 
which shall be considered by researchers, manu-
facturers, agricultural advisors and farmers when 
designing and applying a specifi c biofertilizer: a 
challenge to transform the fertilization with these 
products into a common practice for twenty-fi rst 
century agriculture.     
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